The House Edge – Kemenangan Dijamin untuk Kasino

[ad_1]

Inilah mengapa penting untuk mengetahui tepi rumah, yang merupakan jumlah uang yang diharapkan kasino untuk menang dari Anda dari waktu ke waktu ketika Anda memainkan game. Semakin besar tepi, semakin banyak mereka menang. Semakin kecil keuntungan kasino semakin lama uang Anda bisa bertahan. Anda berisiko untuk kehilangan lebih cepat pada semua jenis taruhan dalam permainan yang memiliki tepi rumah lebih dari 2%.

Di sini adalah tepi rumah, keuntungan kasino AKA, untuk beberapa permainan judi paling populer di kasino saat ini:

Rolet

Ada 38 posisi bernomor yang pemain dapat bertaruh dengan berbagai cara. Taruhan nomor tunggal dan menang akan memberikan Anda hasil dari 35 menjadi 1. Oleh karena itu kasino membuat 2 unit keuntungan untuk setiap kemenangan. 2/38 = 5,26% keuntungan untuk rumah. Kerugian yang Anda harapkan dari waktu ke waktu adalah $ 5,26 untuk setiap $ 100 yang dipertaruhkan. pada satu nomor.

Craps

Jenis taruhan Tepi

Pass Line 1,4%

Tempatkan 6, 8 1,5%

Setiap Tujuh (satu gulung taruhan) 14,36%

Baccarat

Bank Bet. 1,06%

Taruhan Pemain 1,24%

Taruhan Taruhan 14,38%

Blackjack Dasar

Sejauh ini permainan meja terbaik selama pemain menggunakan strategi dasar yang benar dan rumah menawarkan aturan yang menguntungkan seperti:

Blackjack membayar 3 hingga 2

Dealer berdiri di tujuh belas lembut

Gandakan setelah pasangan terpisah

Gandakan 2 kartu apa saja

Bagi kembali pasangan

Penyerahan diizinkan

Carilah aturan-aturan ini dan Anda akan menikmati tepi rumah sekitar 0,5%.

Perlu dicatat bahwa banyak kasino telah beralih ke memukul 17 lembut. Ini meningkatkan tepi ke 0,7% tetapi masih permainan yang bagus. Waspadai permainan yang hanya membayar 6 hingga 5 untuk pemain blackjack, bukan 3 hingga 2 biasa. Sederhananya, permainan 3/2 menjaring pemain $ 15 untuk taruhan $ 10, sedangkan permainan 6/5 hanya membayar $ 12. Itu adalah – kerugian $ 3 untuk setiap blackjack! Tidak baik. Sayangnya, strip Vegas berubah menjadi 6/5 game.

Varian Blackjack

Dua varian blackjack tepi bawah adalah:

Spanyol 21. 0,7%

Blackjack Switch 0,6%

Pertandingan Karnaval

Ingat kata-kata terkenal dari pemusik karnaval P.T. Barnum? "Ada pengisap yang lahir setiap menit". Sejumlah permainan dijuluki karnaval permainan karena keunggulan rumah yang lebih tinggi daripada penawaran tradisional blackjack dan baccarat. Mereka:

Bonus Texas Holdem 2,0%

Tiga Kartu Poker 2,3%

Ultimate Texas Holdem 2,5%

Empat Kartu Poker 2,8%

Perang Kasino 2,9%

Crazy 4 Poker 3.4%

Biarkan Ride 3,5%

Mississippi Stud Poker 4,9%

Karibia Stud Poker 5,2%

Juga, perhatikan opsional bonus atau sisi taruhan di meja. Kebanyakan permainan memilikinya, termasuk yang memiliki tepi rendah. Jumlah pembayaran yang menang terlihat sangat menarik dan pemain dapat menang bahkan jika taruhan asli hilang ke rumah. Namun tepi rumah melompat ke dua digit pada sebagian besar taruhan ini.

Perjudian Olahraga

Ketika bertaruh pada pertandingan olahraga, rumah itu mengambil "vig", slang untuk semangat, ketika petaruh bertaruh bahkan uang taruhan. Misalnya, taruhan $ 10 pada Buffalo Bills, vs. Miami Dolphins akan berharga $ 11. Pemain memenangkan $ 10, rumah menyimpan $ 1.

Mesin slot

Tampaknya semua orang suka slot penny hari ini. Multi-koin, multi-garis dengan tema mencolok, grafik dan fitur bonus. Pemain dapat bertaruh sesedikit lima belas sen hingga tiga atau empat dolar per putaran. tepi pada penny berkisar antara 10 & 15%! Pegangan pada dolar dan mesin yang lebih tinggi jauh lebih rendah, mulai dari 2 hingga 5%. Jika Anda akan bertaruh maksimal dalam penny, Anda lebih baik memainkan uang.

Jika Anda suka mesin belajar di video poker. Pelajari cara membaca tabel pembayaran yang diposting di setiap mesin. Ada elemen keterampilan untuk video poker. Memilih game yang tepat dapat menjatuhkan tepi rumah menjadi kurang dari 1%. Semoga berhasil!

[ad_2]

Odds Craps – Yang Harus Anda Ketahui Tentang Mereka dan Edge House – Maaf, Dice Tidak Berbicara

[ad_1]

Ada banyak hal yang perlu dipertimbangkan ketika Anda memutuskan untuk mengambil subjek – peluang craps. Para ahli cenderung setuju … yah, kebanyakan dari mereka cenderung setuju, Anda harus memahami peluang dadu terlebih dahulu, agar memiliki pengetahuan yang cukup untuk memainkan permainan dadu.

Bahkan, beberapa orang akan menekankan bahwa Anda harus tahu peluang sebelum Anda membuat taruhan, untuk mengetahui taruhan mana yang memberi rumah (kasino) tepi yang lebih kecil di atas Anda.

Mengapa ujung rumah itu penting? Seseorang dapat membantah bahwa permainan craps tidak dapat dipukul. Ketika mempertimbangkan odds craps, ada bukti matematis untuk mendukung pernyataan ini. Ini benar, bukankah masuk akal untuk mengurangi keuntungan dari rumah, dengan demikian berharap untuk mengurangi jumlah yang pada akhirnya akan hilang?

Ada kemungkinan bahwa Anda mungkin berpikir – Craps tidak dapat dipukuli? Heck, saya telah meninggalkan seorang pemenang sebelumnya, jadi itu tidak benar. Argumen ini, ketika tidak mengambil peluang dadu dan tepi rumah menjadi pertimbangan, dapat menahan air dalam kondisi tertentu.

Namun, ketika mempertimbangkan peluang dadu, pemikirannya bukanlah bahwa sesi atau serangkaian gulungan tertentu tidak dapat dikalahkan. Idenya adalah bahwa peluang craps dan tepi rumah dirancang untuk memastikan rumah tidak dapat dipukul dalam jangka waktu yang lama.

Mari kita periksa ini sebentar.

Kita dapat mulai memahami peluang dadu dengan melihat probabilitas (peluang, atau peluang) untuk menggulirkan angka tertentu. Hal pertama yang harus Anda lakukan adalah menghitung jumlah kombinasi yang mungkin menggunakan sepasang dadu.

Anda dapat melihat bahwa ada enam sisi untuk satu mati. Setiap sisi mewakili angka tertentu. Angka-angka adalah – 1, 2, 3, 4, 5, dan 6.

Ada dua dadu, jadi Anda kalikan enam kali enam untuk menentukan jumlah kombinasi yang mungkin. Dalam hal ini, jumlahnya adalah 36 (6 x 6 = 36).

Selanjutnya, perlakukan setiap mati secara terpisah (mati A di sebelah kiri, dan mati B di sebelah kanan), tentukan berapa banyak cara Anda dapat menggulung setiap angka berikut – 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, dan 12.

Berikut hasilnya – 2 (1 arah), 3 (2 cara), 4 (3 cara), 5 (4 cara), 6 (5 cara), 7 (6 arah), 8 (5 cara), 9 (4) cara), 10 (3 cara), 11 (2 cara), 12 (1 arah).

Sekarang, Anda menghitung probabilitas dengan membagi jumlah cara untuk menggulung nomor dengan jumlah kombinasi yang mungkin menggunakan sepasang dadu (36). Misalnya, ada satu cara untuk menggulirkan angka 2, sehingga Anda memiliki peluang 1 dalam 36 untuk menggulirkan dua. Probabilitasnya adalah 1/36 atau 2,78%.

Berikut adalah peluang untuk memutar setiap angka – 2 (1/36, 2,78%), 3 (2/36, 5,56%), 4 (3/36, 8.33%), 5 (4/36, 11.11%), 6 (5/36, 13.89%), 7 (6/36, 16.67%), 8 (5/36, 13.89%), 9 (4/36, 11.11%), 10 (3/36, 8.33%), 11 (2/36, 5,56%), 12 (1/36, 2,78%).

Probabilitas di atas menunjukkan apa yang mungkin atau mungkin terjadi pada setiap gulungan independen dari dadu. Independen karena apa pun hasil dari lemparan dadu berikutnya, itu tidak tergantung pada, atau dipengaruhi oleh gulungan dadu sebelumnya.

Anda mungkin pernah mendengar pepatah tidak memiliki memori – baik, mengingat fakta bahwa mereka adalah objek tanpa kapasitas untuk berpikir atau menjalankan perhitungan, dengan kata lain, dadu tidak memiliki otak – aman untuk mengatakan bahwa dadu tidak dapat mengingat apa saja, jadi gulungan sebelumnya tidak relevan.

Menggunakan argumen yang sama, Anda dapat mengatakan bahwa dadu tidak mengetahui probabilitas, sehingga mereka tidak dipengaruhi oleh probabilitas. Tapi, jika itu benar, tidak bisakah Anda juga mengatakan bahwa dadu tidak tahu odds craps, sehingga mereka tidak dapat dipengaruhi oleh odds craps? Ups! Jangan jawab itu dulu.

Sekarang setelah Anda mengetahui probabilitasnya, langkah Anda selanjutnya adalah memahami bagaimana hal ini berkaitan dengan peluang dadu.

Pertama, Anda tidak dapat menentukan odds craps yang sebenarnya tanpa mengetahui kemungkinan bergulirnya angka tertentu. Satu definisi odds, menurut Kamus Online Merriam-Webster, adalah sebagai berikut – rasio probabilitas satu peristiwa dengan kejadian alternatif.

Dengan kata lain, Anda perlu mengetahui probabilitas untuk menggulung nomor dalam situasi tertentu, untuk menentukan odds craps yang sebenarnya.

Berikut ini adalah rumus sederhana untuk odds craps sejati dalam menggulirkan angka apa pun sebelum 7 pada gulungan berikutnya: P7 dibagi dengan PN = odds craps yang benar. Huruf P adalah kependekan dari probabilitas, dan huruf N melambangkan nomor yang digulirkan sebelum angka tujuh.

Dengan menggunakan rumus ini Anda dapat menghitung peluang craps yang sebenarnya dari rolling a 2 sebelum 7. P7 / P2 = odds craps yang benar, jadi 16.67% (.1667) /2.78% (.0278) = 6.00. Kemungkinan craps yang sebenarnya untuk menggulirkan 2 sebelum 7 – adalah 6 hingga 1.

Konsep yang sama ini, tidak selalu formula yang sama, digunakan untuk secara matematis menentukan peluang craps yang benar dari semua taruhan dalam permainan dadu. Namun, tepi rumah dihitung untuk mendukung rumah, dan inilah yang memberi keuntungan bagi rumah.

Sebagai contoh, peluang craps sejati untuk menggulirkan angka 6 sebelum 7 adalah – P7 / P6 = 0,1667 / 0,1389 = 1,2, atau 6/5, atau 6 hingga 5, atau 6: 5. Namun, rumah membayar 7: 6 (7 sampai 6) ketika Anda membuat tempat bertaruh pada nomor 6. Perbedaan antara peluang cromp yang benar dari 6: 5 dan pembayaran yang sebenarnya dari 7: 6 adalah tepi rumah, yang 1,52%.

Dengan pemikiran ini, apa yang terjadi jika Anda bertaruh $ 12 untuk menempatkan 6 (membuat taruhan yang 6 menunjukkan sebelum 7), dan penembak menggulung 6?

Kemungkinan craps yang sebenarnya adalah pembayaran 6: 5 atau 6 dolar untung setiap 5 dolar yang Anda pertaruhkan, yaitu sekitar $ 14,40. Namun, rumah membayar Anda 7: 6, bukan peluang craps yang sebenarnya, jadi Anda hanya mendapat untung $ 14 … selisihnya menjadi 40 sen.

Apakah ini berarti Anda kehilangan $ 0,40? Hmmm … Anda menaruh $ 12 di atas meja, memenangkan untung $ 14, plus Anda harus mempertahankan taruhan $ 12 … apakah Anda merasa kehilangan uang pada saat ini?

Apakah Anda pikir dadu tahu berapa banyak biaya tepi rumah Anda?

Oke, itu cukup sedikit untuk dipikirkan, jadi mari kita gali lebih dalam.

Anda tahu bahwa angka 6 akan digulirkan sebanyak lima kali dalam 36 gulungan … dalam teori. Anda juga tahu bahwa angka 7 akan digulung enam kali dalam 36 gulungan … dalam teori.

Mari kita bergantian 6 dan 7 sedemikian rupa sehingga 6 digulung sebelum 7, kemudian 7 digulung sebelum 6. Selanjutnya, mari kita lakukan ini untuk mencerminkan teori bahwa 6 akan digulirkan lima kali dan 7 akan digulirkan 6 kali. Selain itu, kami akan membuat taruhan $ 12 pada 6 untuk setiap kali kami bergantian 6 dan 7.

By the way, ini akan mewakili total sebelas taruhan. Lima dari taruhan akan menang untuk 6, dan enam dari taruhan akan menjadi kerugian karena 7. Ini akan lebih masuk akal sebagai contoh berlangsung.

Anda mulai dengan taruhan $ 12 pada 6 dan menang. Ini memberi Anda keuntungan $ 14.

Selanjutnya, Anda membuat lagi $ 12 tempat bertaruh pada 6, tetapi, karena kita bergantian hasil, 7 digulirkan sebelum 6. Anda kehilangan taruhan tempat $ 12, dan sekarang memiliki total keuntungan $ 2 ($ 14 laba sebelumnya dikurangi kerugian $ 12 ).

Selanjutnya, $ 12 tempat lain bertaruh pada 6 dan menang. Ini memberi Anda keuntungan $ 14 untuk taruhan ini, dan laba keseluruhan sebesar $ 16 (laba total sebelumnya $ 2 ditambah keuntungan $ 14 pada taruhan ini).

Selanjutnya, Anda membuat lagi $ 12 tempat bertaruh pada 6, tetapi, karena kita bergantian hasil, 7 itu digulirkan lagi sebelum 6. Anda kehilangan taruhan tempat $ 12, dan sekarang memiliki total keuntungan $ 4 ($ 16 laba sebelumnya minus $ 12 kerugian).

Sejauh ini Anda telah menggulung 6 dua kali dan tujuh kali.

Selanjutnya, $ 12 tempat lain bertaruh pada 6 dan menang. Ini memberi Anda keuntungan $ 14 untuk taruhan ini, dan laba keseluruhan sebesar $ 18 (laba total sebelumnya sebesar $ 4 ditambah laba $ 14 pada taruhan ini).

Selanjutnya, Anda membuat $ 12 tempat lain bertaruh pada 6, tetapi 7 digulirkan lagi sebelum 6. Anda kehilangan taruhan tempat $ 12, dan sekarang memiliki total keuntungan $ 6 ($ 18 laba sebelumnya dikurangi kerugian $ 12).

Selanjutnya, $ 12 tempat lain bertaruh pada 6 dan menang. Ini memberi Anda keuntungan $ 14 untuk taruhan ini, dan laba keseluruhan $ 20 (laba total sebelumnya $ 6 ditambah keuntungan $ 14 pada taruhan ini).

Selanjutnya, Anda membuat $ 12 tempat lain bertaruh pada 6, tetapi 7 digulirkan lagi sebelum 6. Anda kehilangan taruhan $ 12, dan sekarang memiliki total keuntungan $ 8 ($ 20 keuntungan sebelumnya dikurangi kerugian $ 12).

Anda telah menggulung 6 total empat kali dan 7 sebanyak empat kali. Ini berarti Anda memiliki satu lagi gulungan 6 dan dua gulungan lagi 7 untuk pergi.

Selanjutnya, $ 12 tempat lain bertaruh pada 6 dan menang. Ini memberi Anda keuntungan $ 14 untuk taruhan ini, dan laba keseluruhan $ 22 (laba total sebelumnya $ 8 ditambah laba $ 14 pada taruhan ini).

Selanjutnya, Anda membuat $ 12 tempat lain bertaruh pada 6, tetapi 7 digulirkan lagi sebelum 6. Anda kehilangan taruhan tempat $ 12, dan sekarang memiliki total keuntungan $ 10 ($ 22 laba sebelumnya dikurangi kerugian $ 12).

Karena Anda telah kehabisan gulungan 6 dalam skenario hipotetis kami, Anda masih memiliki satu rol lagi 7 untuk pergi. Ini berarti membuat satu tempat lagi bertaruh pada 6.

Anda membuat $ 12 tempat terakhir bertaruh pada 6, tetapi 7 digulirkan lagi sebelum 6. Anda kehilangan taruhan tempat $ 12, dan sekarang memiliki total keuntungan – $ 2 ($ 10 keuntungan sebelumnya dikurangi kerugian $ 12).

Berdasarkan informasi di atas, jika uang Anda hanya $ 12 yang Anda mulai dengan, Anda baru saja kehilangan 17% dari uang Anda. Jika uang Anda $ 100, Anda baru saja kehilangan 2% dari uang Anda.

Inilah pertanyaan sesungguhnya – Apakah kerugian karena kemungkinan bergulir 6 sebelum 7, atau karena tepi rumah?

Dengan melihat skenario yang sama, menggunakan peluang craps yang sebenarnya, kita bisa mendapatkan ide yang lebih baik tentang dampak dari tepi rumah.

Anda mulai dengan taruhan $ 12 pada 6 dan menang. Ini memberi Anda keuntungan $ 14,40.

Selanjutnya, Anda membuat $ 12 tempat lain bertaruh pada 6, tapi, karena kita bergantian hasil, 7 digulirkan sebelum 6. Anda kehilangan taruhan tempat $ 12, dan sekarang memiliki total keuntungan $ 2,40 ($ 14,40 laba sebelumnya dikurangi kerugian $ 12 ).

Selanjutnya, $ 12 tempat lain bertaruh pada 6 dan menang. Ini memberi Anda keuntungan $ 14,40 untuk taruhan ini, dan keuntungan keseluruhan $ 16,80 (laba total sebelumnya $ 2,40 ditambah keuntungan $ 14,40 pada taruhan ini).

Selanjutnya, Anda membuat $ 12 tempat lain bertaruh pada 6, tapi, karena kita bergantian hasil, 7 digulirkan lagi sebelum 6. Anda kehilangan taruhan tempat $ 12, dan sekarang memiliki total keuntungan $ 4,80 ($ 16,80 laba sebelumnya minus $ 12 kerugian).

Sejauh ini Anda telah menggulung 6 dua kali dan tujuh kali.

Selanjutnya, $ 12 tempat lain bertaruh pada 6 dan menang. Ini memberi Anda keuntungan $ 14,40 untuk taruhan ini, dan laba keseluruhan $ 19,20 (laba total sebelumnya $ 4,80 ditambah laba $ 14,40 pada taruhan ini).

Selanjutnya, Anda membuat $ 12 tempat lain bertaruh pada 6, tetapi 7 digulirkan lagi sebelum 6. Anda kehilangan taruhan $ 12, dan sekarang memiliki total keuntungan $ 7,20 ($ 19,20 laba sebelumnya minus kerugian $ 12).

Selanjutnya, $ 12 tempat lain bertaruh pada 6 dan menang. Ini memberi Anda keuntungan $ 14,40 untuk taruhan ini, dan laba keseluruhan $ 21,60 (laba total sebelumnya $ 7,20 ditambah laba $ 14,40 pada taruhan ini).

Selanjutnya, Anda membuat $ 12 tempat lain bertaruh pada 6, tetapi 7 digulirkan lagi sebelum 6. Anda kehilangan taruhan tempat $ 12, dan sekarang memiliki total keuntungan $ 9,60 ($ 21,60 laba sebelumnya minus kerugian $ 12).

Anda telah menggulung 6 total empat kali dan 7 sebanyak empat kali. Ini berarti Anda memiliki satu lagi gulungan 6 dan dua gulungan lagi 7 untuk pergi.

Selanjutnya, $ 12 tempat lain bertaruh pada 6 dan menang. Ini memberi Anda keuntungan $ 14,40 untuk taruhan ini, dan laba keseluruhan $ 24 (laba total sebelumnya $ 9,60 ditambah keuntungan $ 14,40 pada taruhan ini).

Selanjutnya, Anda membuat $ 12 tempat lain bertaruh pada 6, tetapi 7 digulirkan lagi sebelum 6. Anda kehilangan taruhan tempat $ 12, dan sekarang memiliki total keuntungan $ 12 ($ 24 laba sebelumnya dikurangi kerugian $ 12).

Karena Anda telah kehabisan gulungan 6 dalam skenario hipotetis kami, Anda masih memiliki satu rol lagi 7 untuk pergi. Ini berarti membuat satu tempat lagi bertaruh pada 6.

Anda membuat $ 12 tempat terakhir bertaruh pada 6, tetapi 7 digulirkan lagi sebelum 6. Anda kehilangan taruhan tempat $ 12, dan sekarang memiliki total keuntungan $ 0 ($ 12 laba sebelumnya dikurangi kerugian $ 12).

Berdasarkan informasi di atas, jika uang Anda hanya $ 12 yang Anda mulai dengan, Anda baru saja impas. Jika uang Anda $ 100, Anda baru saja impas.

Dengan memeriksa dua skenario hipotetis di atas, harus jelas untuk melihat bahwa tepi rumah tidak sepenuhnya bertanggung jawab atas kerugian Anda.

Probabilitas membuat angka sebelum 7, dan tepi rumah digabungkan, menyebabkan kerugian. Apa yang akan terjadi jika kita mengabaikan probabilitas, dan berguling 6 dan 7 lima kali masing-masing?

Melihat skenario pertama, dengan tepi rumah diperhitungkan, Anda akan berada di depan, dengan keuntungan $ 10. Melihat skenario kedua, dengan peluang craps benar diperhitungkan, Anda akan berada di depan, dengan keuntungan $ 12.

Apa artinya ini? Odds Craps tidak sepenuhnya bertanggung jawab atas kerugian jangka panjang yang diharapkan dalam permainan dadu.

Diperlukan kombinasi dari probabilitas (kombinasi angka yang akan dihasilkan dalam jangka panjang), ditambah peluang (pembayaran aktual faktor itu di tepi rumah), dan dalam kasus-kasus tertentu, aturan permainan (misalnya, aturan bahwa bar 12 pada gulungan keluar saat bertaruh Jangan Lewat).

Apakah ini berarti bahwa Anda dapat menghasilkan keuntungan dalam jangka pendek? Iya nih! Bagaimana Anda menentukan jangka panjangnya?

Pertanyaan bagus! Mungkin Anda harus menanyakan dadu. 😉

[ad_2]